Cart (Loading....) | Create Account
Close category search window
 

Hardware and compiler-directed cache coherence in large-scale multiprocessors: Design considerations and performance study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Choi, L. ; Dept. of Electr. & Comput. Eng., California Univ., Irvine, CA, USA ; Pen-Chung Yew

In this paper, we study a hardware-supported, compiler-directed (HSCD) cache coherence scheme, which can be implemented on a large-scale multiprocessor using off-the-shelf microprocessors, such as the Cray T3D. The scheme can be adapted to various cache organizations, including multiword cache lines and byte-addressable architectures. Several system related issues, including critical sections, interthread communication, and task migration have also been addressed. The cost of the required hardware support is minimal and proportional to the cache size. The necessary compiler algorithms, including intra- and interprocedural array data flow analysis, have been implemented on the Polaris parallelizing compiler. From our simulation study using the Perfect Club benchmarks, we found that in spite of the conservative analysis made by the compiler, for four of six benchmark programs tested, the proposed HSCD scheme outperforms the full-map hardware directory scheme up to 70 percent while the hardware scheme outperforms the HSCD scheme in the remaining two applications up to 89 percent. Given its comparable performance and reduced hardware cost, the proposed scheme can be a viable alternative for large-scale multiprocessors such as the Cray T3D, which rely on users to maintain data coherence

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:11 ,  Issue: 4 )

Date of Publication:

Apr 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.