By Topic

The space filling mode of holey fibers: an analytical vectorial solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Midrio ; Ist. Nazionale per la Fisica della Mater., Udine Univ., Italy ; M. P. Singh ; C. G. Someda

We tackle holey fibers in full vectorial terms. From Maxwell's equations, we derive the dispersion relations of the modes guided by an infinitely self-similar air hole lattice. We focus in particular on the fundamental mode (the so-called space filling mode), and show that previous numerical results based on vector methods are accurate, but scalar ones are not. We also find the field flow lines, intensity distribution in the cross section, and linear polarization ratio vs. wavelength.

Published in:

Journal of Lightwave Technology  (Volume:18 ,  Issue: 7 )