Cart (Loading....) | Create Account
Close category search window
 

Optimal design of grating-assisted directional couplers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Passaro, V.M.N. ; Dipt. di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy

In this paper, a rigorous leaky mode propagation method has been used to investigate the influence of the grating period and grating index profile on the design of grating-assisted directional couplers (GADC's). A detailed explanation of resonance condition and radiation loss in terms of electromagnetic field contribution in the grating region as a function of the grating period and profile is given. Optimal design parameters hare been found for well-defined structures in order to achieve either minimum coupling length or maximum coupling efficiency. A very fast method to extract the resonance condition in any grating-assisted structure by using a sinusoidal profile is proposed. Numerical results are presented for both moderately and strongly asymmetric structures in terms of normalized propagation constant, mode radiation loss, coupling length and coupling efficiency. Comparisons with grating period and coupling length predictions obtained by other methods are also shown. The rectangular profile with optimized duty cycle has been demonstrated to be the best choice in order to minimize the GADC coupling length.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 7 )

Date of Publication:

July 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.