Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Generalized study of dispersion-induced power penalty mitigation techniques in millimeter-wave fiber-optic links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fuster, J.M. ; ETSI Telecommun., Univ. Politecnica de Valencia, Spain ; Marti, J. ; Corral, J.L. ; Polo, V.
more authors

The authors present a comprehensive analysis of the chromatic dispersion effects in harmonic upconverted millimeter-wave (mm-wave) fiber-optic links. The optical upconversion is performed through a photonic mixer based on a Mach-Zehnder electrooptical modulator. It is shown that by biasing the electrooptical modulator either at the maximum or at the minimum transmission bias points, the dispersion-induced power penalty effect on the upconverted signal may be sharply mitigated, which results in increasing the frequency-length product of the fiber-optic link. Experimental results are provided for the three different types of bias.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 7 )