By Topic

Theoretical analysis and performance limits of noncoherent sequence detection of coded PSK

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Colavolpe, G. ; Dipt. di Ingegneria dell''Inf., Parma Univ., Italy ; Raheli, R.

A theoretical performance analysis of noncoherent sequence detection schemes previously proposed by the authors for combined detection and decoding of coded M-ary phase-shift keying (M-PSK) is presented. A method for the numerical evaluation of the pairwise error probability-for which no closed-form expressions exist-is described, the classical union bound is computed, and results are compared with computer simulations. An upper bound on this pairwise error probability is also presented. This upper bound may be effectively used for the definition of an equivalent distance, which may be useful in exhaustive searches for optimal codes. Using this bound, it is proven that, in the general coded case, the considered noncoherent decoding schemes perform as close as desired to an optimal coherent receiver when a phase memory parameter is sufficiently large. In the case of differentially encoded M-PSK, a simple expression of the asymptotic bit-error probability is derived, which is in agreement with simulations for high as well as low signal-to-noise ratio (SNR)

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 4 )