By Topic

Multihypothesis sequential probability ratio tests. II. Accurate asymptotic expansions for the expected sample size

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dragalin, V.P. ; SmithKline Beecham Pharm., Collegeville, PA, USA ; Tartakovsky, A.G. ; Veeravalli, V.V.

For pt. I see ibid. vol.45, p.2448-61, 1999. We proved in pt.I that two specific constructions of multihypothesis sequential tests, which we refer to as multihypothesis sequential probability ratio tests (MSPRTs), are asymptotically optimal as the decision risks (or error probabilities) go to zero. The MSPRTs asymptotically minimize not only the expected sample size but also any positive moment of the stopping time distribution, under very general statistical models for the observations. In this paper, based on nonlinear renewal theory we find accurate asymptotic approximations (up to a vanishing term) for the expected sample size that take into account the “overshoot” over the boundaries of decision statistics. The approximations are derived for the scenario where the hypotheses are simple, the observations are independent and identically distributed (i.i.d.) according to one of the underlying distributions, and the decision risks go to zero. Simulation results for practical examples show that these approximations are fairly accurate not only for large but also for moderate sample sizes. The asymptotic results given here complete the analysis initiated by Baum and Veeravalli (1994), where first-order asymptotics were obtained for the expected sample size under a specific restriction on the Kullback-Leibler distances between the hypotheses

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 4 )