By Topic

Finding the permutation between equivalent linear codes: the support splitting algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sendrier, N. ; Inst. Nat. de Recherche en Inf. et Autom., Le Chesnay, France

Two linear codes are permutation-equivalent if they are equal up to a fixed permutation on the codeword coordinates. We present here an algorithm able to compute this permutation. It operates by determining a set of properties invariant by permutation, one for each coordinate, called a signature. If this signature is fully discriminant-i.e., different for all coordinates-the support of the code splits into singletons, and the same signature computed for any permutation-equivalent code will allow the reconstruction of the permutation. A procedure is described to obtain a fully discriminant signature for most linear codes. The total complexity of the support splitting algorithm is polynomial in the length of the code and exponential in the dimension of its hull, i.e., the intersection of the code with its dual

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 4 )