By Topic

Multiobjective evolutionary computation for supersonic wing-shape optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Obayashi ; Dept. of Aeronaut. & Space Eng., Tohoku Univ., Sendai, Japan ; D. Sasaki ; Y. Takeguchi ; N. Hirose

This paper discusses the design optimization of a wing for supersonic transport (SST) using a multiple-objective genetic algorithm (MOGA). Three objective functions are used to minimize the drag for supersonic cruise, the drag for transonic cruise, and the bending moment at the wing root for supersonic cruise. The wing shape is defined by 66 design variables. A Euler flow code is used to evaluate supersonic performance, and a potential flow code is used to evaluate transonic performance. To reduce the total computational time, flow calculations are parallelized on an NEC SX-4 computer using 32 processing elements. The detailed analysis of the resulting Pareto front suggests a renewed interest in the arrow wing planform for the supersonic wing

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:4 ,  Issue: 2 )