Cart (Loading....) | Create Account
Close category search window
 

Dimensionality reduction using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Raymer, M.L. ; Dept. of Biol., Michigan State Univ., East Lansing, MI, USA ; Punch, W.F. ; Goodman, E.D. ; Kuhn, L.A.
more authors

Pattern recognition generally requires that objects be described in terms of a set of measurable features. The selection and quality of the features representing each pattern affect the success of subsequent classification. Feature extraction is the process of deriving new features from original features to reduce the cost of feature measurement, increase classifier efficiency, and allow higher accuracy. Many feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and classification efficiency, it does not necessarily reduce the number of features to be measured since each new feature may be a linear combination of all of the features in the original pattern vector. Here, we present a new approach to feature extraction in which feature selection and extraction and classifier training are performed simultaneously using a genetic algorithm. The genetic algorithm optimizes a feature weight vector used to scale the individual features in the original pattern vectors. A masking vector is also employed for simultaneous selection of a feature subset. We employ this technique in combination with the k nearest neighbor classification rule, and compare the results with classical feature selection and extraction techniques, including sequential floating forward feature selection, and linear discriminant analysis. We also present results for the identification of favorable water-binding sites on protein surfaces

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.