Cart (Loading....) | Create Account
Close category search window
 

An adaptive hybrid genetic algorithm for the three-matching problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Magyar, G. ; Dept. of Math. Sci., Turku Univ., Finland ; Johnsson, M. ; Nevalainen, O.

This paper presents a hybrid genetic algorithm (GA) with an adaptive application of genetic operators for solving the 3-matching problem (3MP), an NP-complete graph problem. In the 3MP, we search for the partition of a point set into minimal total cost triplets, where the cost of a triplet is the Euclidean length of the minimal spanning tree of the three points. The problem is a special case of grouping and facility location problems. One common problem with GA applied to hard combinatorial optimization, like the 3MP, is to incorporate problem-dependent local search operators into the GA efficiently in order to find high-quality solutions. Small instances of the problem can be solved exactly, but for large problems, we use local optimization. We introduce several general heuristic crossover and local hill-climbing operators, and apply adaptation to choose among them. Our GA combines these operators to form an effective problem solver. It is hybridized as it incorporates local search heuristics, and it is adaptive as the individual recombination/improvement operators are fired according to their online performance. Test results show that this approach gives approximately the same or even slightly better results than our previous, fine tuned GA without adaptation. It is better than a grouping GA for the partitioning considered. The adaptive combination of operators eliminates a large set of parameters, making the method more robust, and it presents a convenient way to build a hybrid problem solver

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:4 ,  Issue: 2 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.