By Topic

Lower bound sifting for MDDs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jankovic, D. ; Fac. of Electron. Eng., Nis Univ., Serbia ; Gunther, W. ; Drechsler, R.

Decision Diagrams (DDs) are a data structure for the representation and manipulation of discrete logic functions often applied in VLSI CAD. Common DDs to represent Boolean functions are Binary Decision Diagrams (BDDs). Multiple-valued logic functions can be represented by multiple-valued Decision Diagrams (MDDs). The effiency of a DD representation strongly depends on the variable ordering; the size may vary from linear to exponential. Finding a good ordering is an NP-hard problem that has received considerable attention resulting in many minimization methods. Sifting is the most popular heuristic for dynamic DD minimization. In this paper we give lower bounds for sifting of MDDs. Based on them, both lower bound sifting for MDD minimization and lower bound group sifting for BDD minimization are proposed. By the computation of good lower bounds large parts of the search space can be pruned resulting in very fast computations. This is demonstrated by experimental results

Published in:

Multiple-Valued Logic, 2000. (ISMVL 2000) Proceedings. 30th IEEE International Symposium on

Date of Conference:

2000