By Topic

Fuzzy decision diagrams for the representation, analysis and optimization of rule bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Strehl, K. ; Comput. Eng. & Networks Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Moraga, C. ; Temme, K.-H. ; Stankovic, R.S.

When no expert knowledge is available, fuzzy if-then rules may be extracted from examples of performance of a system. For this, an a priori decision on the number of linguistic terms of the linguistic variables may be required. This may induce a “rigid granularity”, usually finer than that actually required by the system. Fuzzy Decision Diagrams are introduced as an efficient data structure to represent fuzzy rule bases and to systematically check their completeness and consistency. Moreover if the hypothesis of rigid granularity holds, reordering of the variables of a Fuzzy Decision Diagram may lead to a compacter and more precise rule base. The concept of reconvergent subgraphs is introduced to support the search for effective reorderings

Published in:

Multiple-Valued Logic, 2000. (ISMVL 2000) Proceedings. 30th IEEE International Symposium on

Date of Conference: