By Topic

Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chang, C.S. ; Power Syst. Lab., Nat. Univ. of Singapore, Singapore ; Xu, D.Y.

Train performance of mass rapid transit systems can be improved with the use of fuzzy controllers in automatic train operation (ATO) systems. The tuning of these fuzzy controllers is presented using the algorithm of differential evolution (DE). The basic DE algorithm is modified to optimise a multiobjective function comprising punctuality, riding comfort and energy usage. Using this algorithm, the fuzzy ATO controller is tuned for each interstation train run. In operation, the controller adjusts each train's control according to the current operating conditions. A fuzzy ATO controller model was previously developed by the authors and is used to demonstrate the effectiveness of the tuning scheme

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:147 ,  Issue: 3 )