By Topic

Iterative decoding of one-step majority logic deductible codes based on belief propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lucas, R. ; Siemens AG, Ulm, Germany ; Fossorier, M.P.C. ; Yu Kou ; Shu Lin

Previously, the belief propagation (BP) algorithm has received a lot of attention in the coding community, mostly due to its near-optimum decoding for low-density parity check (LDPC) codes and its connection to turbo decoding. In this paper, we investigate the performance achieved by the BP algorithm for decoding one-step majority logic decodable (OSMLD) codes. The BP algorithm is expressed in terms of likelihood ratios rather than probabilities, as conventionally presented. The proposed algorithm fits better the decoding of OSMLD codes with respect to its numerical stability due to the fact that the weights of their check sums are often much higher than that of the corresponding LDPC codes. Although it has been believed that OSMLD codes are far inferior to LDPC codes, we show that for medium code lengths (say between 200-1000 bits), the BP decoding of OSMLD codes can significantly outperform BP decoding of their equivalent LDPC codes. The reasons for this behavior are elaborated

Published in:

Communications, IEEE Transactions on  (Volume:48 ,  Issue: 6 )