Cart (Loading....) | Create Account
Close category search window
 

Noise characterization of block-iterative reconstruction algorithms. I. Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soares, E.J. ; Dept. of Math. & Comput. Sci., Coll. of the Holy Cross, Worcester, MA, USA ; Byrne, C.L. ; Glick, S.J.

Researchers have shown increasing interest in block-iterative image reconstruction algorithms due to the computational and modeling advantages they provide. Although their convergence properties have been well documented, little is known about how they behave in the presence of noise. In this work, the authors fully characterize the ensemble statistical properties of the rescaled block-iterative expectation-maximization (RBI-EM) reconstruction algorithm and the rescaled block-iterative simultaneous multiplicative algebraic reconstruction technique (RBI-SMART). Also included in the analysis are the special cases of RBI-EM, maximum-likelihood EM (ML-EM) and ordered-subset EM (OS-EM), and the special case of RBI-SMART, SMART. A theoretical formulation strategy similar to that previously outlined for ML-EM is followed for the RBI methods. The theoretical formulations in this paper rely on one approximation, namely, that the noise in the reconstructed image is small compared to the mean image. In a second paper, the approximation will be justified through Monte Carlo simulations covering a range of noise levels, iteration points, and subset orderings. The ensemble statistical parameters could then be used to evaluate objective measures of image quality.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

April 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.