By Topic

Modeling the triggering of streamers in air by ultrashort laser pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Vidal, F. ; Inst. Nat. de la Recherche Sci.-Energie et Mater., Varennes, PQ, Canada ; Comtois, D. ; Ching-Yuan Chien ; Desparois, Alain
more authors

The physical processes involved in the triggering of ionization waves (streamers) by ultrashort laser pulses, focused in air at 350 Torr and in a uniform electric field, are investigated by means of a one-dimensional (1-D) numerical model. The model describes the interaction of the laser pulse with air and takes into account many of the reactions in the laser-created plasma as well as the radial expansion of the plasma. Consequences of the model are that the threshold electric field for the appearance of streamers is an increasing function of the delay between the laser pulse and the electric field pulse and a decreasing function of the laser energy. Also, it appears that the electron temperature, the plasma density and radius, and the conduction of heat across the plasma boundaries play major roles in the capacity of the laser-created plasma to trigger streamers. The results of the model are compared with the available experimental data

Published in:

Plasma Science, IEEE Transactions on  (Volume:28 ,  Issue: 2 )