By Topic

Measurements and analyses of substrate noise waveform in mixed-signal IC environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. Nagata ; Fac. of Eng., Hiroshima Univ., Japan ; J. Nagai ; T. Morie ; A. Iwata

A transition-controllable noise source is developed in a 0.1-μm P-substrate N-well CMOS technology. This noise source can generate substrate noises with controlled transitions in size, interstage delay and direction for experimental studies on substrate noise properties in a mixed-signal integrated circuit environment. Substrate noise measurements of 100 ps, 100-μs resolution are performed by indirect sensing that uses the threshold voltage shift in a latch comparator and by direct probing that uses a PMOS source follower. Measured waveforms indicate that peaks reflecting logic transition frequencies have a time constant that is more than ten times larger than the switching time. Analyses with equivalent circuits confirm that charge transfer between the entire parasitic capacitance in digital circuits and an external supply through parasitic impedance to supply/return paths dominates the process, and the resultant return bounce appears as the substrate noise

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:19 ,  Issue: 6 )