Cart (Loading....) | Create Account
Close category search window
 

Current-sensor-based feed cutting force intelligent estimation and tool wear condition monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoli Li ; Inst. of Precision Eng., Harbin Inst. of Technol., China ; Djordjevich, A. ; Venuvinod, P.K.

Tool wear condition monitoring has the potential to play a critical role in ensuring the dimensional accuracy of the workpiece and prevention of damage to cutting equipment. It could also help in automating cutting processes. In this paper, the feed cutting force estimated with the aid of an inexpensive current sensor installed on the AC servomotor of a computerized numerical control tuning center is used to monitor tool wear condition. To achieve this, the feed drive system is modeled, using neuro-fuzzy techniques, to provide the framework for estimating the feed cutting force based on the feed motor current measured. Functional dependence of the feed cutting force on tool wear and cutting parameters are then expressed in the form of a difference equation relating variation in the feed cutting force to tool wear rate. The computerized system automatically compares successive feed cutting force estimates and determines the onset of accelerated tool wear in order to issue a request for tool replacement. Experimental results show that the tool wear condition monitoring is effective and industrially applicable

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 3 )

Date of Publication:

Jun 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.