Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Blind identification of quadratic nonlinear models using neural networks with higher order cumulants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hong-Zhou Tan ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; Chow, T.W.S.

A novel approach to blindly estimate kernels of any discrete- and finite-extent quadratic models in higher order cumulants domain based on artificial neural networks is proposed in this paper. The input signal is assumed an unobservable independently identically, distributed random sequence which is viable for engineering practice. Because of the properties of the third-order cumulant functions, identifiability of the nonlinear model holds, even when the model output measurement is corrupted by a Gaussian random disturbance. The proposed approach enables a nonlinear relationship between model kernels and model output cumulants to be established by means of neural networks. The approximation ability of the neural network with the weights-decoupled extended Kalman filter training algorithm is then used to estimate the model parameters. Theoretical statements and simulation examples together with practical application to the train vibration signals modeling corroborate that the developed methodology is capable of providing a very promising way to identify truncated Volterra models blindly

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 3 )