By Topic

A novel high-power low-distortion synchronous link converter-based load compensator without the requirement of VAr calculator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chatterjee, K. ; Dept. of Electr. Eng., Indian Inst. of Technol., Bombay, India ; Fernandes, B.G. ; Dubey, G.K.

A high-power low-distortion static VAr compensator based on a synchronous link converter has been proposed, where the harmonics are eliminated by incorporating a low-power insulated-gate-bipolar-transistor-based controlled current auxiliary converter in conjunction with a high-power gate-turn-off-thyristor-based converter. In this paper, a new load compensator based on this topology is proposed which does not require the information of the voltampere required by the load. As the requirement of the reactive voltampere calculator is eliminated, the scheme becomes insensitive to system frequency variations, temperature, and component aging. The control scheme required for the compensator is developed. The operation of the scheme is validated through extensive simulation studies. Experimental results obtained from a laboratory prototype are provided to demonstrate the viability of the scheme

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 3 )