By Topic

Phase noise in oscillators: a unifying theory and numerical methods for characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Demir, A. ; Dept. of Design Principles Res., Lucent Technol., Murray Hill, NJ, USA ; Mehrotra, A. ; Roychowdhury, J.

Phase noise is a topic of theoretical and practical interest in electronic circuits, as well as in other fields, such as optics. Although progress has been made in understanding the phenomenon, there still remain significant gaps, both in its fundamental theory and in numerical techniques for its characterization. In this paper, we develop a solid foundation for phase noise that is valid for any oscillator, regardless of operating mechanism. We establish novel results about the dynamics of stable nonlinear oscillators in the presence of perturbations, both deterministic and random. We obtain an exact nonlinear equation for phase error, which we solve without approximations for random perturbations. This leads us to a precise characterization of timing jitter and spectral dispersion, for computing of which we have developed efficient numerical methods. We demonstrate our techniques on a variety of practical electrical oscillators and obtain good matches with measurements, even at frequencies close to the carrier, where previous techniques break down. Our methods are more than three orders of magnitude faster than the brute-force Monte Carlo approach, which is the only previously available technique that can predict phase noise correctly

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:47 ,  Issue: 5 )
RFIC Virtual Journal, IEEE