By Topic

A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, an unsupervised image segmentation technique is presented, which combines pyramidal image segmentation with the fuzzy c-means clustering algorithm. Each layer of the pyramid is split into a number of regions by a root labeling technique, and then fuzzy c-means is used to merge the regions of the layer with the highest image resolution. A cluster validity functional is used to find the optimal number of objects automatically. Segmentation of a number of synthetic as well as clinical images is illustrated and two fully automatic segmentation approaches are evaluated, which determine the left ventricular volume (LV) in 140 cardiovascular magnetic resonance (MR) images. First fuzzy c-means is applied without pyramids. In the second approach the regions generated by pyramidal segmentation are merged by fuzzy c-means. The correlation coefficients of manually and automatically defined LV lumen of all 140 and 20 end-diastolic images were equal to 0.86 and 0.79, respectively, when images were segmented with fuzzy c-means alone. These coefficients increased to 0.90 and 0.93 when the pyramidal segmentation was combined with fuzzy c-means. This method can be applied to any dimensional representation and at any resolution level of an image series. The evaluation study shows good performance in detecting LV lumen in MR images

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 7 )