Cart (Loading....) | Create Account
Close category search window
 

Temporal BYY learning for state space approach, hidden Markov model, and blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lei Xu ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong

The temporal Bayesian Yang-Yang (TBYY) learning has been presented for signal modeling in a general state space approach, which provides not only a unified point of view on the Kalman filter, hidden Markov model (HMM), independent component analysis (ICA), and blind source separation (BSS) with extensions, but also further advances on these studies, including a higher order HMM, independent HMM for binary BSS, temporal ICA (TICA), and temporal factor analysis for real BSS without and with noise. Adaptive algorithms are developed for implementation and criteria are provided for selecting an appropriate number of states or sources. Moreover, theorems are given on the conditions for source separation by linear and nonlinear TICA. Particularly, it has been shown that not only non-Gaussian but also Gaussian sources can also be separated by TICA via exploring temporal dependence. Experiments are also demonstrated

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.