By Topic

Lagrange/Vandermonde MUI eliminating user codes for quasi-synchronous CDMA in unknown multipath

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scaglione, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Giannakis, G.B. ; Barbarossa, S.

A family of codes for low-complexity quasi-synchronous code division multiple access (CDMA) systems is developed in order to eliminate multiuser interference (MUI) completely in the presence of unknown and even rapidly varying multipath. Judiciously designed precomputable symbol-periodic user codes, which we term Lagrange or Vandermonde, and the corresponding linear receivers offer a generalization of orthogonal frequency division multiplexing (OFDM), which are especially valuable when deep-fading, carrier frequency errors, and Doppler effects are present. The flexibility inherent to the designed transceivers is exploited to derive transmission strategies that cope with major impairments of wireless CDMA channels. The symbol-periodic code design is also generalized to include the class of aperiodic spreading and orthogonal multirate codes for variable bit rate users. Performance analysis and simulations results illustrate the advantages of the proposed scheme over competing alternatives

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )