By Topic

Transmitter redundancy for blind estimation and equalization of time- and frequency-selective channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tepedelenlioglu, C. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Giannakis, G.B.

Joint mitigation of time- and frequency-selective fading is an important and challenging problem in mobile communications. Relying on transmitter-induced redundancy, we propose novel channel estimation and symbol recovery approaches for blind identification and equalization of time- and frequency-selective channels, where the time variation is modeled deterministically by a basis expansion. The resulting statistical algorithm enables the usage of a single antenna, dispenses with channel disparity conditions of existing approaches, and allows channel order overestimation. In addition, new deterministic algorithms for generalized OFDM systems are introduced that produce reliable estimates with few data points at high SNR's. Simulations illustrate the approaches developed

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )