Cart (Loading....) | Create Account
Close category search window
 

Statistical analysis of some second-order methods for blind channel identification/equalization with respect to channel undermodeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Delmas, J.-P. ; Dept. of SIM, Inst. Nat. des Telecommun., Evry, France ; Gazzah, H. ; Liavas, A.P. ; Regalia, P.A.

Many second-order approaches have been proposed for blind FIR channel identification in single-input/multi-output context. In practical conditions, the measured impulse responses usually possess “small” leading and trailing terms, the second-order statistics are estimated from finite sample size, and there is additive white noise. This paper, based on a functional methodology, develops a statistical performance analysis of any second-order approach under these practical conditions. We study two channel models. In the first model, the channel tails are considered to be deterministic. We derive expressions for the asymptotic bias and covariance matrix (when the sample size tends to ∞) of the mth-order estimated significant part of the impulse response. In the second model, the tails are treated as zero mean Gaussian random variables. Expressions for the asymptotic covariance matrix of the estimated significant part of the impulse response are then derived when the sample size tends to ∞, and the variance of the tails tends to 0. Furthermore, some asymptotic statistics are given for the estimated zero-forcing equalizer, the combined channel-equalizer impulse response, and some byproducts, such as the open eye measure. This allows one to assess the influence of the limited sample size and the size of the tails, respectively, on the performance of identification and equalization of the algorithms under study. Closed-form expressions of these statistics are given for the least-squares, the subspace, the linear prediction, and the outer-product decomposition (OPD) methods, as examples. Finally, the accuracy of the asymptotic analysis is checked by numerical simulations; the results are found to be valid in a very large domain of the sample size and the size of the tails

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )

Date of Publication:

Jul 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.