Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Efficient training of neural nets for nonlinear adaptive filtering using a recursive Levenberg-Marquardt algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ngia, L.S.H. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Goteborg, Sweden ; Sjoberg, J.

The Levenberg-Marquardt algorithm is often superior to other training algorithms in off-line applications. This motivates the proposal of using a recursive version of the algorithm for on-line training of neural nets for nonlinear adaptive filtering. The performance of the suggested algorithm is compared with other alternative recursive algorithms, such as the recursive version of the off-line steepest-descent and Gauss-Newton algorithms. The advantages and disadvantages of the different algorithms are pointed out. The algorithms are tested on some examples, and it is shown that generally the recursive Levenberg-Marquardt algorithm has better convergence properties than the other algorithms

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 7 )