By Topic

Estimation of the parameters of autoregressive signals from colored noise-corrupted measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zheng, W.-X. ; Sch. of Sci., Univ. of Western Sydney, NSW, Australia

This paper is concerned with identification of autoregressive (AR) model parameters using observations corrupted with colored noise. A novel formulation of an auxiliary least-squares estimator is introduced so that the autocovariance functions of the colored observation noise can be estimated in a straightforward manner. With this, the colored-noise-induced estimation bias can be removed to yield the unbiased estimate of the AR parameters. The performance of the proposed unbiased estimation algorithm is illustrated by simulation results. The presented work greatly extends the author's previous methods that were developed for identification of AR signals observed in white noise.

Published in:

Signal Processing Letters, IEEE  (Volume:7 ,  Issue: 7 )