By Topic

Using fluid models to prove stability of adversarial queueing networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Gamarnik ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

A digital communication network can be modeled as an adversarial queueing network. An adversarial queueing network is defined to be stable if the number of packets stags bounded over time. A central question is to determine which adversarial queueing networks are stable under every work-conserving packet routing policy. Our main result is that stability of an adversarial queueing network is implied by stability of an associated fluid queueing network

Published in:

IEEE Transactions on Automatic Control  (Volume:45 ,  Issue: 4 )