By Topic

A systematic design procedure of force controllers for industrial robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Natale, C. ; Dipartimento di Inf. e Sistemistica, Naples Univ., Italy ; Koeppe, R. ; Hirzinger, G.

In this paper, the problem of designing a force controller for industrial robots with a positional interface is addressed. A systematic design procedure to compute structures and parameters of the controller is devised, to provide a useful tool for rapid and robust setup of force control at the industrial level. The proposed method for synthesis of the force controller simply requires technology parameters provided by the robot manufacturer and desired performance expressed in non-technical terms by the user. The automated design algorithm is described in detail and its effectiveness was proved by experiments on two different industrial robots. On the first robotic setup, the performance of the designed controllers was evaluated by analyzing the experimental results of responses to canonical reference signals; on the second setup, the controller reliability and applicability at the industrial level were demonstrated through the results of a mechanical parts mating task

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:5 ,  Issue: 2 )