By Topic

Solder joints inspection using a neural network and fuzzy rule-based classification method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuk Won Ko ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Hyung Suck Cho

In this paper, we described an approach in automation, the visual inspection of solder joint defects of surface mounted components on a printed circuit board, using a neural network with fuzzy rule-based classification method. Inherently, the solder joints have a curved, tiny, and specular reflective surface. This presents the difficulty in taking good images of the solder joints. Furthermore, the shapes of the solder joints tend to greatly vary with their soldering conditions, and are not identical with each other, even though some of the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their properties. To solve this intricate problem, a new classification method is here proposed which consists of two modules: one based upon an unsupervised neural network, and the other based upon a fuzzy set theory. The novel idea of this approach is that a fuzzy rule table reflecting the knowledge of criteria of a human inspector, is utilized in order to correct any possible misclassification made by the neural network module. The performance of the proposed approach was tested on numerous samples of printed circuit boards in commercially available computers, and then compared with that of a human inspector. Experimental results reveal that the proposed method is superior to the neural network classification method alone, in terms of its accuracy of classification

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:23 ,  Issue: 2 )