By Topic

Extension of dynamic link matching by introducing local linear maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aonishi, T. ; Dept. of Syst. & Human Sci., Osaka Univ., Japan ; Kurata, K.

It is well known that dynamic link matching (DLM) is a flexible pattern matching model tolerant of deformation or nonlinear transformation. However, previous models cannot treat severely deformed data pattern in which local features do not have their counterparts in a template pattern. We extend DLM by introducing local linear maps (LLMs). Our model has a reference vector and an LLM for each lattice point of a data pattern. The reference vector maps the lattice point into a template pattern and the LLM carries the information regarding how the local neighborhood is mapped. Our model transforms local features by LLMs in a data pattern and then matches them with their counterparts in a template pattern. Therefore, our model is adaptable to larger transformations. For simplicity, we restricted LLMs to rotations. Neighboring LLMs are diffusionally coupled with each other. The model is numerically demonstrated to be very flexible in dealing with deformation and rotation compared to previous models. The framework of our model can be easily extended to models with more general LLMs (expansion, contraction, and so on)

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 3 )