By Topic

Classification ability of single hidden layer feedforward neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guang-Bin Huang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Yan-Qiu Chen ; Babri, H.A.

Multilayer perceptrons with hard-limiting (signum) activation functions can form complex decision regions. It is well known that a three-layer perceptron (two hidden layers) can form arbitrary disjoint decision regions and a two-layer perceptron (one hidden layer) can form single convex decision regions. This paper further proves that single hidden layer feedforward neural networks (SLFN) with any continuous bounded nonconstant activation function or any arbitrary bounded (continuous or not continuous) activation function which has unequal limits at infinities (not just perceptrons) can form disjoint decision regions with arbitrary shapes in multidimensional cases, SLFN with some unbounded activation function can also form disjoint decision regions with arbitrary shapes

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 3 )