Cart (Loading....) | Create Account
Close category search window
 

Probabilistic principal component subspaces: a hierarchical finite mixture model for data visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yue Wang ; Dept. of Electr. Eng. & Comput. Sci., Catholic Univ. of America, Washington, DC, USA ; Lan Luo ; Freedman, M.T. ; Sun-Yuan Kung

Visual exploration has proven to be a powerful tool for multivariate data mining and knowledge discovery. Most visualization algorithms aim to find a projection from the data space down to a visually perceivable rendering space. To reveal all of the interesting aspects of multimodal data sets living in a high-dimensional space, a hierarchical visualization algorithm is introduced which allows the complete data set to be visualized at the top level, with clusters and subclusters of data points visualized at deeper levels. The methods involve hierarchical use of standard finite normal mixtures and probabilistic principal component projections, whose parameters are estimated using the expectation-maximization and principal component neural networks under the information theoretic criteria. We demonstrate the principle of the approach on several multimodal numerical data sets, and we then apply the method to the visual explanation in computer-aided diagnosis for breast cancer detection from digital mammograms

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.