Cart (Loading....) | Create Account
Close category search window
 

Interactive visualization and analysis of hierarchical neural projections for data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Konig, A. ; Tech. Univ. Dresden, Germany

Dimensionality reducing mappings, often also denoted as multidimensional scaling, are the basis for multivariate data projection and visual analysis in data mining. Topology and distance preserving mapping techniques-e.g., Kohonen's self-organizing feature map (SOM) or Sammon's nonlinear mapping (NLM)-are available to achieve multivariate data projections for the following interactive visual analysis process. For large data bases, however, NLM computation becomes intractable. Also, if additional data points or data sets are to be included in the projection, a complete recomputation of the mapping is required. In general, a neural network could learn the mapping and serve for arbitrary additional data projection. However, the computational costs would also be high, and convergence is not easily achieved. In this work, a convenient hierarchical neural projection approach is introduced, where first an unsupervised neural network-e.g., a SOM-quantizes the data base, followed by fast NLM mapping of the quantized data. In the second stage of the hierarchy, an enhancement of the NLM by a recall algorithm is applied. The training and application of a second neural network, which is learning the mapping by function approximation, is quantitatively compared with this new approach. Efficient interactive visualization and analysis techniques, exploiting the achieved hierarchical neural projection for data mining, are presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.