By Topic

Taking on the curse of dimensionality in joint distributions using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bengio, S. ; CIRAN, CIRANO, Montreal, Que., Canada ; Bengio, Y.

The curse of dimensionality is severe when modeling high-dimensional discrete data: the number of possible combinations of the variables explodes exponentially. We propose an architecture for modeling high-dimensional data that requires resources (parameters and computations) that grow at most as the square of the number of variables, using a multilayer neural network to represent the joint distribution of the variables as the product of conditional distributions. The neural network can be interpreted as a graphical model without hidden random variables, but in which the conditional distributions are tied through the hidden units. The connectivity of the neural network can be pruned by using dependency tests between the variables (thus reducing significantly the number of parameters). Experiments on modeling the distribution of several discrete data sets show statistically significant improvements over other methods such as naive Bayes and comparable Bayesian networks and show that significant improvements can be obtained by pruning the network

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 3 )