By Topic

Prototype feedback-controlled bidirectional actuation system for MEMS applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bhansali, S. ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH, USA ; Zhang, A.L. ; Zmood, R.B. ; Jones, P.E.
more authors

We have successfully developed a one degree-of-freedom microsuspension system, with active position control, as a paradigm of a micromagnetic bearing. This system integrates an electromagnetic actuator, a position sensor, and a feedback control system that provides active position control. This paper discusses the design and fabrication details of the microelectromechanical system (MEMS) components: the beam mass structure integrated with a drive coil and metallized targets, spacer plate, and sensor coils. It also discusses their integration with millimagnets and electronics. Noncontact magnetic bearings based on this principle have the potential of overcoming the tribo-physical issues associated with active MEMS devices.

Published in:

Microelectromechanical Systems, Journal of  (Volume:9 ,  Issue: 2 )