By Topic

Surface-tension-driven microactuation based on continuous electrowetting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junghoon Lee ; Dept. of Mech. Aerosp. Eng., California Univ., Los Angeles, CA, USA ; Chang-Jin Kim

This paper describes the first microelectromechanical systems (MEMS) demonstration device that adopts surface tension as the driving force. A liquid-metal droplet can be driven in an electrolyte-filled capillary by locally modifying the surface tension with electric potential. We explore this so-called continuous electrowetting phenomenon for MEMS and present crucial design and fabrication technology that reduce the surface-tension-driving principle, inherently powerful in microscale, into practice. The key issues that are identified and investigated include the problem of material compatibility, electrode polarization, and electrolysis, as well as the micromachining process. Based on the results from the initial test devices and the design concept for a long-range movement of the liquid-metal droplet, we demonstrate a liquid micromotor, an electrolyte and liquid-metal droplets rotating along a microchannel loop. Smooth and wear-free rotation of the liquid system is shown at a speed of /spl sim/40 mm/s (or 420 r/min along a 2-mm loop) with a driving voltage of only 2.8 V and little power consumption (10-100 /spl mu/W).

Published in:

Journal of Microelectromechanical Systems  (Volume:9 ,  Issue: 2 )