By Topic

Bayesian analysis of blood glucose time series from diabetes home monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bellazzi, R. ; Dipt. di Inf. e Sistemistica, Pavia Univ., Italy ; Magni, P. ; De Nicolao, G.

Describes the application of a novel Bayesian estimation technique to extract the structural components, i.e., trend and daily patterns, from blood glucose level time series coming from home monitoring of insulin dependent diabetes mellitus patients. The problem is formulated through a set of stochastic equations, and is solved in a Bayesian framework by using a Markov chain Monte Carlo technique. The potential of the method is illustrated by analyzing data coming from the home monitoring of a 14-year old male patient.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 7 )