By Topic

Methods for robust clustering of epileptic EEG spikes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wahlberg, Patrik ; Dept. of Electr. Eng. & Comput. Sci., Lund Univ., Sweden ; Lantz, G.

The authors investigate algorithms for clustering of epileptic electroencephalogram (EEG) spikes. Such a method is useful prior to averaging and inverse computations since the spikes of a patient often belong to a few distinct classes. Data sets often contain outliers, which makes algorithms with robust performance desirable. The authors compare the fuzzy C-means (FCM) algorithm and a graph-theoretic algorithm. They give criteria for determination of the correct level of outlier contamination. The performance is then studied by aid of simulations, which show good results for a range of circumstances, for both algorithms. The graph-theoretic method gave better results than FCM for simulated signals. Also, when evaluating the methods on seven real-life data sets, the graph-theoretic method was the better method, in terms of closeness to the manual assessment by a neurophysiologist. However, there was some discrepancy between manual and automatic clustering and the authors suggest as an alternative method a human choice among a limited set of automatically obtained clusterings. Furthermore, the authors evaluate geometrically weighted feature extraction and conclude that it is useful as a supplementary dimension for clustering.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 7 )