Cart (Loading....) | Create Account
Close category search window
 

Effect of randomness of Cu-Sn intermetallic compound layer thickness on reliability of surface mount solder joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Huang ; Dept. of Syst. & Ind. Eng., Arizona Univ., Tucson, AZ, USA ; Palusinski, O.A. ; Dietrich, Duane L.

A statistical reliability analysis on thermal fatigue lifetime of surface mount solder joints, considering randomness of Cu-Sn intermetallic compound (IMC) layer thickness, is presented. Based on published thermal fatigue life test data, the two-parameter Weibull distribution of the thermal fatigue lifetime for a fixed IMC layer thickness is found, and a K-S goodness-of-fit test is conducted to examine the goodness of fit of the assumed Weibull distribution. Then, the Weibull parameters as functions of IMC layer thickness are obtained. Considering the randomness of IMC layer thickness, the MTTF and reliability of surface mount solder joints on thermal cycles are analyzed. For surface mount solder joints formed under the same conditions and loaded during the same thermal cycling as stated in the publication, numerical results of the MTTF and reliability are presented. The results show that when the mean value of MC layer thickness is low (e.g., smaller than 1.5 μm), the effect of randomness of IMC layer thickness is significant; i.e., the MTTF has strong dependence on IMC layer thickness distribution; and the reliability is significantly different at high thermal cycles. When the mean value of IMC layer thickness is high (e.g., greater than 2.0 μm), the effect of randomness of IMC layer thickness is negligible. Therefore, the presented results are important to the reliability study of surface mount solder joints. Even though the validity of the presented results based on the test data remains to be verified from other sources of data, the proposed statistical method is generally applicable for thermal fatigue reliability analysis of surface mount solder joints. By combining the proposed method with the forming mechanism of IMC layer under varying manufacturing and loading conditions, a comprehensive reliability analysis on thermal fatigue lifetime of surface mount solder joints can be expected

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.