Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roumeliotis, S.I. ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Bekey, George A.

Decision and estimation theory are closely related topics in applied probability. In this paper, Bayesian hypothesis testing is combined with Kalman filtering to merge two different approaches to map-based mobile robot localization; namely Markov localization and pose tracking. A robot carries proprioceptive sensors that monitor its motion and allow it to estimate its trajectory as it moves away from a known location. A single Kalman filter is used for tracking the pose displacements of the robot between different areas. The robot is also equipped with exteroceptive sensors that seek for landmarks in the environment. Simple feature extraction algorithms process the incoming signals and suggest potential corresponding locations on the map. Bayesian hypothesis testing is applied in order to combine the continuous Kalman filter displacement estimates with the discrete landmark pose measurement events. Within this framework, also known as multiple hypothesis tracking, multimodal probability distribution functions can be represented and this inherent limitation of the Kalman filter is overcome

Published in:

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on  (Volume:3 )

Date of Conference: