Cart (Loading....) | Create Account
Close category search window
 

Asynchronous parallel simulation of parallel programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prakash, S. ; TIBCO Software Inc., Palo Alto, CA, USA ; Deelman, E. ; Bagrodia, R.

Parallel simulation of parallel programs for large datasets has been shown to offer significant reduction in the execution time of many discrete event models. The paper describes the design and implementation of MPI-SIM, a library for the execution driven parallel simulation of task and data parallel programs. MPI-SIM can be used to predict the performance of existing programs written using MPI for message passing, or written in UC, a data parallel language, compiled to use message passing. The simulation models can be executed sequentially or in parallel. Parallel execution of the models are synchronized using a set of asynchronous conservative protocols. The paper demonstrates how protocol performance is improved by the use of application-level, runtime analysis. The analysis targets the communication patterns of the application. We show the application-level analysis for message passing and data parallel languages. We present the validation and performance results for the simulator for a set of applications that include the NAS Parallel Benchmark suite. The application-level optimization described in the paper yielded significant performance improvements in the simulation of parallel programs, and in some cases completely eliminated the synchronizations in the parallel execution of the simulation model

Published in:

Software Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 5 )

Date of Publication:

May 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.