By Topic

Feasibility of tomography with unknown view angles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Basu, S. ; Gen. Electr. Corp. Res. & Dev. Center, Niskayuna, NY, USA ; Bresler, Y.

In the standard two-dimensional (2-D) parallel beam tomographic formulation, it is generally assumed that the angles at which the projections were acquired are known. We have previously demonstrated, however, that under fairly mild conditions these view angles can be uniquely recovered from the projections themselves. We address the question of reliability of such solutions to the angle recovery problem using moments of the projections. We demonstrate that under mild conditions, the angle recovery problem has unique solutions and is stable with respect to perturbations in the data. Furthermore, we determine the Cramer-Rao lower bounds on the variance of the estimates of the angles when the projection are corrupted by additive Gaussian noise. We also treat the case in which each projection is shifted by some unknown amount which must be jointly estimated with the view angles. Motivated by the stability results and relatively small values of the error bounds, we construct a simple algorithm to approximate the ML estimator and demonstrate that the problem can be feasibly solved in the presence of noise. Simulations using this simple estimator on a variety of phantoms show excellent performance at low to moderate noise levels, essentially achieving the Cramer-Rao bounds

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 6 )