Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adams, M.D. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Kossentni, F.

In the context of image coding, a number of reversible integer-to-integer wavelet transforms are compared on the basis of their lossy compression performance, lossless compression performance, and computational complexity. Of the transforms considered, several were found to perform particularly well, with the best choice for a given application depending on the relative importance of the preceding criteria. Reversible integer-to-integer versions of numerous transforms are also compared to their conventional (i.e., nonreversible real-to-real) counterparts for lossy compression. At low bit rates, reversible integer-to-integer and conventional versions of transforms were found to often yield results of comparable quality. Factors affecting the compression performance of reversible integer-to-integer wavelet transforms are also presented, supported by both experimental data and theoretical arguments

Published in:

Image Processing, IEEE Transactions on  (Volume:9 ,  Issue: 6 )