By Topic

Improved MCMAC with momentum, neighborhood, and averaged trapezoidal output

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kai Keng Ang ; Delphi Automotive Syst., Singapore Private Ltd., Singapore ; Chai Quek

An improved modified cerebellar articulation controller (MCMAC) neural control algorithm with better learning and recall processes using momentum, neighborhood learning, and averaged trapezoidal output, is proposed in this paper. The learning and recall processes of MCMAC are investigated using the characteristic surface of MCMAC and the control action exerted in controlling a continuously variable transmission (CVT). Extensive experimental results demonstrate a significant improvement with reduced training time and an extended range of trained MCMAC cells. The improvement in recall process using the averaged trapezoidal output (MCMAC-ATO) are contrasted against the original MCMAC using the square of the Pearson product moment correlation coefficient. Experimental results show that the new recall process has significantly reduced the fluctuations in the control action of the MCMAC and addressed partially the problem associated with the resolution of the MCMAC memory array

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 3 )