By Topic

Discovering relevance knowledge in data: a growing cell structures approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
F. Azuaje ; Dept. of Comput. Sci., Trinity Coll., Dublin, Ireland ; W. Dubitzky ; N. Black ; K. Adamson

Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:30 ,  Issue: 3 )