By Topic

A systematic approach to a self-generating fuzzy rule-table for function approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pomares, H. ; Dept. de Arquitectura y Tecnologia de Computadores, Granada Univ., Spain ; Rojas, I. ; Ortega, J. ; Gonzalez, J.
more authors

In this paper, a systematic design is proposed to determine fuzzy system structure and learning its parameters, from a set of given training examples. In particular, two fundamental problems concerning fuzzy system modeling are addressed: 1) fuzzy rule parameter optimization and 2) the identification of system structure (i.e., the number of membership functions and fuzzy rules). A four-step approach to build a fuzzy system automatically is presented: Step 1 directly obtains the optimum fuzzy rules for a given membership function configuration. Step 2 optimizes the allocation of the membership functions and the conclusion of the rules, in order to achieve a better approximation. Step 3 determines a new and more suitable topology with the information derived from the approximation error distribution; it decides which variables should increase the number of membership functions. Finally, Step 4 determines which structure should be selected to approximate the function, from the possible configurations provided by the algorithm in the three previous steps. The results of applying this method to the problem of function approximation are presented and then compared with other methodologies proposed in the bibliography

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 3 )