By Topic

Applying interposition techniques for performance analysis of OPENMP parallel applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. Gonzalez ; Dept. d'Arquitectura de Comput., Univ. Politecnica de Catalunya, Barcelona, Spain ; A. Serra ; X. Martorell ; J. Oliver
more authors

Tuning parallel applications requires the use of effective tools for detecting performance bottlenecks. Along a parallel program execution, many individual situations of performance degradation may arise. We believe that an exhaustive and time-aware tracing at a fine-grain level is essential to capture this kind of situations. This paper presents a tracing mechanism based on dynamic code interposition, and compares it with the usual compiler-directed code injection. Dynamic code interposition adds monitoring code at run-time to unmodified binaries and shared libraries, making it suitable for environments in which the compiler or the available tools do not offer instrumentation facilities. Static injection and dynamic interposition techniques are used to collect detailed traces that feed an analysis tool. Both environments meet the accuracy and performance goals required to profile and analyze parallel applications and runtime libraries

Published in:

Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International

Date of Conference: