By Topic

Using time skewing to eliminate idle time due to memory bandwidth and network limitations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wonnacott, D. ; Haverford Coll., PA, USA

Time skewing is a compile-time optimization that can provide arbitrarily high cache hit rates for a class of iterative calculations, given a sufficient number of time steps and sufficient cache memory. Thus, it can eliminate processor idle time caused by inadequate main memory bandwidth. In this article, we give a generalization of time skewing for multiprocessor architectures, and discuss time skewing for multilevel caches. Our generalization for multiprocessors lets us eliminate processor idle time caused by any combination of inadequate main memory bandwidth, limited network bandwidth, and high network latency, given a sufficiently large problem and sufficient cache. As in the uniprocessor case, the cache requirement grows with the machine balance rather than the problem size. Our techniques for using multilevel caches reduce the LI cache requirement, which would otherwise be unacceptably high for some architectures when using arrays of high dimension

Published in:

Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International

Date of Conference: